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The quality of the image produced by optical reflectarrays as a function of the F=#, polarization, and
wavelength is analyzed in this paper. The results are expressed as monochromatic and polychromatic
modulation transfer functions. They show that large aperture multilevel reflectarrays perform
quite close to the diffraction-limited case. The chromatic aberrations make these elements highly
wavelength-selective. © 2011 Optical Society of America
OCIS codes: 160.3918, 050.5080, 110.3080.

1. Introduction

The use of electromagnetic resonant structures to
modify the phase distribution of an incoming wave-
front is opening the way for so-called resonant optics
devices, which provide new design strategies for per-
formance improvement of optical elements [1–3]. The
basic units of resonant optics are subwavelength
metallic structures above a reflective ground plane,
placed according to regular or nonregular geome-
tries, which interact electromagnetically with the
incident electric field. The reradiated field is able
to modify the spectral component, the polarization
state, and the phase map of the resulting reflected
wavefront [4–6]. Reflectarrays have been primarily
used within the radio and microwave regime. In
those bands, they perform extraordinarily well to
conform and shape beam distributions in conjunc-
tion with classical antenna feed structures [7–9].
At higher frequencies close to the optical range, the
material properties of metals constrain some of the
design flexibility used at lower frequencies [10].
The strong attenuation of the currents generated

in the structures precludes the use of transmission
line structures to extend the phase shift range, as
is typically done in the microwave spectrum.

Recently, some designs of reflectarrays have been
successfully fabricated and tested for use in the infra-
red band at 10:6 μm [1,2]. They consist of a Fresnel
zone arrangement that is selectively populated by re-
sonant structures properly arranged in both shape
and location to produce the desired phase shift on
reflection. Then, the polarization, angular, and chro-
matic dependence of the resonances are superim-
posed, accounting for contributions coming from
the Fresnel layout. The evaluation of the phase shift
produced by the resonant structures is made using
computational electromagnetics.

The modeling of the angular and polarization
response has been made using two different compu-
tational tools: a finite-element package (HFSS by An-
soft) and a method-of-moments algorithm (Designer
by Ansoft). The results of HFSS have been used pre-
viously to quantify the Strehl ratio for a reflectarray
as a function of the aperture [3]. The complex reflec-
tion coefficient of the resonant element is expressed
in Fig. 1 as a function of the angle, polarization state,
and wavelength. The elements analyzed here cor-
respond with a fabricated multilevel reflectarray
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working as a focusing mirror. The reflectarray is first
designed using a Fresnel layout that sizes the radii of
the Fresnel subzones in an eight-level arrangement.
Nominally, the phase shift between adjacent Fresnel
subzones is π=4. The Fresnel subzones are populated
with resonant elements defined on a unit cell having
a constant size along the reflectarray. In our case, the
unit cell is a 5 μm × 5 μm square and the resonant ele-
ments consist in a structure formed by a standoff
layer grown on a metallic ground plane with a metal-
lic patch deposited on top of the standoff layer. The
form and size of this metallic patch determines the
phase shift given by the region of the reflectarray
containing this individual element [3]

After arranging the resonant elements as a multi-
level Fresnel zone plate, the focusing is produced by
the appropriate effect of the geometry of the Fresnel
arrangement and the phase induced by the resonant
elements [11], which can be characterized by a com-
plex reflection coefficient. As far as the resonant
elements behave differently as a function of the angle
of incidence, polarization state, and wavelength, all
these parameters will affect the image quality of
the system. Once the complex reflection coefficient
is obtained, the point spread function (PSF) is calcu-
lated using a Rayleigh–Sommerfeld propagation

algorithm to reach the focal region [12]. The modula-
tion transfer function (MTF) is then evaluated from
the PSF as a function of the F=#, polarization, and
wavelength [13].

In Section 2, we present a monochromatic analysis
of the MTF as a function of the F=# and polarization.
The polychromatic MTF is calculated in Section 3,
assuming that the angle and the state of polarization
do not affect the results, which assumption is most
accurate for high F=# systems. The Strehl ratio is
also used in the chromatic analysis of reflectarrays
as an additional figure of merit of the image quality
of the system. The main conclusions of this manu-
script are then summarized in Section 4.

2. Image Quality for Monochromatic Illumination

As is well known [13], the properties of a linear
imaging system are specified by the PSF, which is
computed as the system response for an input im-
pulse (Dirac delta function). For a mirror reflectarray
imaging an object at the infinity, calculating PSF is
equivalent to calculating the image when a mono-
chromatic on-axis plane wave is entering the system,
so it is necessary to propagate the electric field dis-
tribution from the system’s exit pupil to the image
plane. To do this, we have numerically solved the

Fig. 1. Complex reflection coefficient for the eight different resonant structures used in this study. (a) and (c) represent the magnitude of
the reflection coefficient. (b) and (d) represent the phase. The dependence with the angle for both polarization states is given in (a) and (b),
meanwhile, the spectral behavior is presented in (c) and (d). The SQ labels are for square patches being the number of the value of the side
of the square in nanometers. The SS labels are for square patch elements with slots introduced into the center of the element being the
number of the size of the square slot in nanometers. GP denotes the ground plane. It is worth noticing that (a) and (b) have been computed
using a finite-element method (HFSS by Ansoft) while (c) and (d) have been determined through a method-of-moments algorithm (De-
signer by Ansoft), which may explain the slight differences found for normal incidence and 10:6 μm wavelength.
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Rayleigh–Sommerfeld diffraction equation using the
procedure described by Shen and Wang [12]. There-
fore, in this work we will rely on the scalar diffraction
theory, although we will introduce some polarization
information through the reflection properties of the
reflect array.

For calculating the PSF, we will use the coordinate
system depicted in Fig. 2, so the reflectarray is lo-
cated at the x0 − y0 plane while the point object is
placed on the z axis (we are considering only object
points placed along the optical axis of the system).
Let us define E0ðx0; y0Þ as the electric field coming
from the object point that is incident on the entrance
pupil of the reflectarray. As we are considering the
reflectarray as a flat mirrorlike object, we will char-
acterize it by a complex reflection coefficient ρðx0; y0Þ.
Under these conditions, the reflected electric field
at the reflectarray’s exit pupil is Er0ðx0; y0Þ ¼
ρðx0; y0ÞE0ðx0; y0Þ. Thus, the reflected field Er at
the point with coordinates ðx; y; zÞ is given by [12]

Erðx; y; zÞ ¼
ZZ

A
Er0ðx0; y0Þ ·

expðjkrÞ
2π · r

z
r

×
�
1
r
− jk

�
dx0dy0; ð1Þ

where A is the aperture of the reflectarray and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2 þ z2

p
. The PSF can be calcu-

lated from the electric field as

PSFðx; y; zÞ ¼ ‖Erðx; y; zÞ‖2jOP
; ð2Þ

where OP indicates a point object. The dependence
of PSF on the z coordinate allows us to consider
the effect of defocus on the reflectarray’s image qual-
ity. It should be stressed that using Eq. (1) implies
that we are dealing with a monochromatic input field
so both the reflected field and PSF are functions of
the wavelength, although it has not been explicitly
stated in Eqs. (1) and (2).

A further modification of our method can be intro-
duced in order to deal with vector properties such as
light polarization, accounting for polarization effects
through the complex reflection coefficient function
ρðx0; y0Þ and the Jones vector formalism as described
in [3]. Let us suppose that the vector incident field is
given by a Jones vector:

E0ðx0; y0Þ ¼
�
E0xðx0; y0Þ
E0yðx0; y0Þ

�
: ð3Þ

On the other hand, we have characterized the reflec-
tarray by a complex reflection coefficient function
that is polarization dependent, so we have two com-
ponents, ρ⊥ðx0; y0Þ and ρ‖ðx0; y0Þ, for perpendicular
and parallel polarization to the incident plane, re-
spectively. These reflection coefficients have been
calculated using HFSS and Designer packages as
previously stated. We have to state that, for the case
of off-axis incidence, the definition of the plane of in-
cidence to describe the polarization states should be
reconsidered in order to comply with the coplanarity
condition for the incident and reflected ray vector
and the normal vector to the reflectarray plane. Let
us recall again that, although not explicitly stated,
both incident field and complex reflection coefficient
are wavelength dependent. With these assumptions,
we calculate the reflected electric field at the reflec-
tarray plane as
�
Er0x

Er0y

�
¼ R−1ðβðx0; y0ÞÞ ·

� ρjjðx0; y0Þ 0

0 ρ⊥ðx0; y0Þ

�

· Rðβðx0; y0ÞÞ
�
E0xðx0; y0Þ
E0yðx0; y0Þ

�
; ð4Þ

where R is the two-dimensional rotation matrix and
βðx0; y0Þ is the azimuth angle as seen in Fig. 2. Once
we have calculated the components of the reflected
electric field at the exit pupil of the reflectarray,
we propagate each component independently using
Eq. (1) and calculate the PSF. Afterwards, in order
to estimate the image quality of the reflectarray,
we compute the MTF as the modulus of the complex
optical transfer function Hðνx; νyÞ obtained through
the Fourier transform of the PSF [13]:

Hðνx; νyÞ ¼
ZZ

PSFðx; y; zÞ expð−i · 2π

· ðνxxþ νyyÞÞdxdy: ð5Þ

Following the calculation procedure described in the
preceding paragraphs, we have evaluated the image

Fig. 2. Typical layout of a reflectarray focusing onto a plane.
The resonant element is represented as the dark gray square
on a circular ring at the reflectarray plane. The angle θ describes
the location of a given point of the reflectarray with respect to the
focal point of the system.
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quality at the focal plane (z ¼ f ) of a reflectarray as a
function of the aperture, specified by an F=# ranging
between 0.23 and 8.68. We have considered an inci-
dent collimated beam linearly polarized and we have
studied two cases corresponding to horizontal and
vertical polarization. Our reflectarray has been de-
signed for a wavelength of 10:6 μmwith a focal length
(at the design wavelength) of 152:6mm.

We have previously shown that the irradiance pat-
tern at the focal point loses its radial symmetry due
to the polarization effects [3]. In Fig. 3(a), we show
the horizontal profile of the PSF obtained for both
polarizations for the maximum aperture studied
(F=# ¼ 0:23). A slight difference between the two
profiles can be observed, with the horizontal profile
being narrower than the vertical one. The corre-
sponding horizontal profiles of the two MTFs are de-
picted in Fig. 3(b). From this plot, we can conclude
that even for this low F=#, the incident field polariza-
tion has little influence on image quality, although
the resolution limit along the horizontal direction
is slightly lower for the horizontal polarization.

Another conclusion that can be drawn from the pro-
files of Fig. 3(b) is that the MTF obtained is worse
than the one predicted for an ideal system at the dif-
fraction limit. Therefore, there is a loss of image
quality due to the aberrations introduced by the com-
plex reflection coefficient function for this low F=#.

For a higher F=#, we obtain the plots in Fig. 4(a),
where the reflectarray presents a better image qual-
ity because the MTF profiles are closer to the ideal
system, but at the same time, the resolving power
(given by the MTF cutoff frequency) decreases. The
increment of image quality can be seen clearly in
Fig. 4(b) where we show, as a function of F=#, the ra-
tio between the area of the horizontal MTF profile
obtained for the reflectarray and the area of the
MTF corresponding to a diffraction-limited system
with the same aperture. We can see in Fig. 4(b) how
the area quotient becomes closer to 1 as the F=# in-
creases, indicating a net gain of image quality. This
fact can be explained because with a higher F=#, the
effect of aberrations is reduced. On the other hand,
diffraction effects become more noticeable, so the ex-
tent of the PSF is increased and, consequently, the

Fig. 3. (a) PSF and (b) MTF for a large aperture reflectarray as
a function of the polarization state of the incident radiation. The
cutoff frequency is the same for the two polarizations but the MTF
behaves differently.

Fig. 4. (a) Horizontal profile of the MTF for horizontal linear
polarization as a function of the F=#. (b) Ratio between the area
under the calculated MTF and the diffraction-limited MTF as a
function of the F=#.
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MTF cutoff frequency (resolving power) drops.
Therefore, attending to image quality criteria, the re-
flectarray behaves in the same way as other image
formation systems.

As a practical consequence, a compromise must be
made between the aperture size of the reflectarray in
order to get the maximum image quality with the
greatest aperture possible. In this way, Fig. 4(b) could
be of use to determine such a compromise. In our ex-
ample, it can be observed that for F=# higher than 4,
there is no gain in image quality, so the optimum F=#
value (regardless of other considerations such as il-
lumination, etc.) should not be higher than 4 in order
to meet the best compromise between image quality
and aperture.

3. Polychromatic Image Quality

The analysis of the polychromatic behavior of the
reflectarray is made using the same formalism as
in the case of a monochromatic input. An input mono-
chromatic plane wave impinges on the reflectarray
and the given image is obtained. However, as the dif-
fractive design is strongly dependent on wavelength,
the image is obtained for a collection of planes along
the propagation axis and not just at the designed
focal length. On the other hand, the reflectarray is
typically designed to perform the best at a specified
wavelength, for which a nominal focal length is de-
fined. The chromatic properties of the Fresnel layout
can then be expressed as the following dependence:

f ðλÞ ¼ f dλd
λ ; ð6Þ

where f d is the nominal focal distance for a design
wavelength λd. Figure 5(a) shows the irradiance as
a function of the wavelength and the axial coordi-
nate. The maximum is located at those points given
by Eq. (6). On the other hand, the value of the
maximum of irradiance as a function of λ, plotted
in Fig. 5(b), has a dependence that follows the chro-
matic behavior of the modulus of the reflection coef-
ficient of the resonant elements [see Fig. 1(c)].

A. Strehl Ratio for Reflectarrays

To begin the analysis of the image quality as a func-
tion of the wavelength, we first calculate the Strehl
ratio [14] and provide a wavelength range where the
Strehl ratio is higher than a predefined value.

The chromatic change in intensity at the focal
point is approximately given as a Taylor expansion
around the wavelength where the maximum is
reached as

IðλÞ ¼ Id þ
∂I
∂λ

����
λ¼λmax

Δλþ 1
2
∂2I

∂λ2
����
λ¼λmax

ðΔλÞ2: ð7Þ

The Strehl ratio is then defined as S ¼ IðλÞ
Id
. Because

the situation at λ ¼ λmax is that of a maximum of
irradiance, then analytically we may assume that
the first derivative is zero and the second derivative

is negative. Therefore, the Strehl ratio is given as a
quadratic function in Δλ ¼ λ − λmax:

S ¼ 1þ 1
2Id

∂2I

∂λ2
����
λ¼λmax

ðΔλÞ2: ð8Þ

From the numerical results obtained for the fabri-
cated reflectarray, having an F=6 aperture, we may
evaluate this second derivative. After this calcula-
tion, we found that the Strehl ratio falls to 0.8 when
Δλ ¼ 79:2nm, showing the strong chromatic depen-
dence of the system. This corresponds with a 0.7%
relative change in wavelength. This result is slightly
different for each wavelength.

B. Polychomatic MTF

After obtaining the spectral complex reflection coef-
ficient map, ρðx; y; λÞ, we simulate the focusing prop-
erties of this reflectarray for a collimated incident
beam of uniform irradiance aligned with the optical
axis and having an aperture of F=6. We propagate
this field to a focus plane located at a distance z
from the reflectarray using a Rayleigh–Sommerfeld

Fig. 5. (a) Irradiance map as a function of the axial coordinate
z and λ. The white cross represents the point corresponding to
the design conditions. (b) Plot of the evolution of the irradiance
at the location given by Eq. (3).
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algorithm [12]. Figure 5(a) shows the distribution of
the on-axis irradiance on the image plane as a func-
tion of the axial coordinate z (longitudinal chromatic
aberration) and wavelength λ. The plot shows that,
because of the dispersive nature of the resonant
elements seen in Fig. 1, the on-axis irradiance is
not the same for each wavelength. The decrease in
focused irradiance observed around λ ¼ 9:5 μm can
be explained by the decrease in the magnitude of
the complex reflection coefficient. We have verified
by calculation that even though the relative shifts be-
tween successive zones may strongly depart from the
nominal case [as shown in Fig. 1(d)], the focusing is
mainly driven by the Fresnel subzone arrangement
and by the magnitude of the reflection coefficients.
This is shown in Fig. 5(b). Only when the interzone
phase increment significantly departs from the
nominal one (45°) does the maximum irradiance de-
crease. Figure 5(a) also shows that, for a fixed image
plane, the image quality will change rapidly when
the wavelength changes. To illustrate this, we plot
in Fig. 6(a) the MTF at the focal plane for several
wavelengths around λd. The MTF for λd ¼ 10:6 μm

is nearly that of a perfect system that corresponds
to the almost diffraction-limited PSF for an F=6
system, as shown in Fig. 4(b). However, when the
wavelength departs from the design wavelength,
the reflectarray shows significant chromatic aberra-
tion. The chromatic aberration can be interpreted as
a wavelength-dependent defocus (axial chromatic
aberration). Therefore, for a different location of the
image plane, the best image quality will be obtained
for a wavelength different from λd. In Fig. 6(b),
we plot the MTF for a given frequency (one-third
of the cutoff frequency obtained at λd) for different
wavelengths at two different locations, the focal
plane z1 ¼ f d ¼ 0:1524m and a plane placed at a dis-
tance z2 ¼ 0:1753m from the reflectarray. The result
shows that, for the focal plane, the maximum MTF
is obtained for λd, while for the second plane, the wa-
velength that gives the maximumMTF is λ ¼ 9:2 μm,
as predicted by Eq. (6). The dispersion of the sub-
wavelength elements makes these two profiles
different.

4. Conclusions

The resonant elements that constitute an infrared
reflectarray have functional dependence on angle,
polarization state, and wavelength. The effect of this
dependence on the quality of the images given by re-
flectarrays has been analyzed for a focusing reflectar-
ray in the infrared. The MTF has been calculated
from a PSF evaluated using a Rayleigh–Sommerfeld
approach, adapted to deal with polarization within a
Jones formalism.

For monochromatic illumination, we verified that
the MTF is quite similar to the diffraction-limited
one. When comparing the actual and diffraction-
limited MTFs for the same F=# we found that for
F=# greater than 2, the ratio between the area under
the MTF is larger than 0.95, maintaining a high and
constant value when F=# ≥ 4. When considering po-
larization only for very low F=# (large apertures),
we find a nonnegligible difference between the hori-
zontal and vertical polarizations in the MTF. At the
same time, those MTFs for very low F=# are well
below the diffraction-limited MTF even for low fre-
quency components. The chromatic dependence of
reflectarrays is strongly affected by the Fresnel zone
arrangement of the resonant elements. The calcula-
tion of the Strehl ratio shows that it decays to 0.8
when the wavelength has 0.7% of relative change.
This value indicates a strong chromatic dependence.
This can be also seen when evaluating the MTF at
several wavelengths. The almost diffraction-limited
behavior is significantly degraded when the wave-
length changes around the design wavelength. The
chromatic change can be only compensated when
moving the plane of interest to the location predicted
by the diffraction theory. The behavior at the best
focus plane follows a dependence that resembles
the chromatic change in the modulus of the reflection
coefficient of the resonant structures.

Fig. 6. (a) MTF for different wavelengths at the location of the
nominal focus. MTF for amultilevel reflectarray at the focal planes
for different wavelengths. (b) Chromatic dependence of the MTFat
6:95 cycles=mm for two axial positions.
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Summarizing, we may conclude that the image
quality of multilevel reflectarrays almost reaches
the diffraction-limited behavior for medium and
small apertures (F=# > 4). The angular and polariza-
tion dependence is only significant for large aperture
elements. On the other hand, due to the Fresnel zone
arrangement of the resonant elements, the chro-
matic behavior is quite strong.

This work has been partially supported by the
Spanish Ministry of Science under the project
ENE2009-14340.
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